lớp 12

Sách Giải Bài Tập Toán Lớp 12 Bài 1 : Nguyên Hàm

Rate this post

Mời các bạn xem thêm danh sách tổng hợp Giải bài tập toán 12 nguyên hàm trang 100 Tốt nhất

Video Giải bài tập toán 12 nguyên hàm trang 100

Xem toàn bộ tài liệu Lớp 12: tại đây

Xem thêm các sách tham khảo liên quan:

  • Sách giáo khoa đại số và giải tích 12
  • Sách giáo khoa hình học 12
  • Sách giáo khoa giải tích 12 nâng cao
  • Sách giáo khoa hình học 12 nâng cao
  • Giải Sách Bài Tập Toán Lớp 12
  • Sách Giáo Viên Giải Tích Lớp 12
  • Sách Giáo Viên Hình Học Lớp 12
  • Sách Giáo Viên Giải Tích Lớp 12 Nâng Cao
  • Sách Giáo Viên Hình Học Lớp 12 Nâng Cao
  • Giải Toán Lớp 12 Nâng Cao
  • Sách Bài Tập Giải Tích Lớp 12
  • Sách Bài Tập Giải Tích Lớp 12 Nâng Cao
  • Sách Bài Tập Hình Học Lớp 12 Nâng Cao
  • Sách Bài Tập Hình Học Lớp 12

Sách giải toán 12 Bài 1 : Nguyên hàm giúp bạn giải các bài tập trong sách giáo khoa toán, học tốt toán 12 sẽ giúp bạn rèn luyện khả năng suy luận hợp lý và hợp logic, hình thành khả năng vận dụng kết thức toán học vào đời sống và vào các môn học khác:

Xem Thêm:   Bài tập cuối tuần Toán lớp 3 Tuần 12 (cả ba sách) | Đề kiểm tra cuối

Trả lời câu hỏi Toán 12 Giải tích Bài 1 trang 93: Tìm hàm số F(x) sao cho F’(x) = f(x) nếu:

a) f(x) = 3×2 với x ∈ (-∞; +∞);

b) f(x) = 1/(cos⁡x)2 với x ∈ ((-π)/2; π/2).

Lời giải:

F(x) = x3 vì (x3)’ = 3×2

F(x) = tanx vì (tanx)’ = 1/(cos⁡x)2 .

Trả lời câu hỏi Toán 12 Giải tích Bài 1 trang 93: Hãy tìm thêm những nguyên hàm khác của các hàm số nêu trong Ví dụ 1.

Lời giải:

(x) = x2 + 2 do (F(x))’=( x2 + 2)’ = 2x + 0 = 2x. Tổng quát F(x) = x2 + c với c là số thực.

F(x) = lnx + 100, do (F(x))’ = 1/x , x ∈ (0,+∞). Tổng quát F(x)= lnx + c, x ∈ (0,+∞) và với c là số thực.

Trả lời câu hỏi Toán 12 Giải tích Bài 1 trang 93: Hãy chứng minh Định lý 1.

Lời giải:

Vì F(x) là nguyên hàm của f(x) trên K nên (F(x))’ = f(x). Vì C là hằng số nên (C)’ = 0.

Ta có:

(G(x))’ = (F(x) + C)’ = (F(x))’ + (C)’ = f(x) + 0 = f(x)

Vậy G(x) là một nguyên hàm của f(x).

Lời giải:

Xem thêm: Soạn văn 6 trang 12 Chân trời sáng tạo – Tập 2 – Download.vn

Ta có [∫f(x) ± ∫g(x)]’= [∫f(x) ]’± [∫g(x) ]’ = f(x)±g(x).

Vậy ∫f(x) ± ∫g(x) = ∫[f(x)±g(x)].

Lời giải:

f’(x) f(x) + C 0 C αxα -1 xα + C 1/x (x ≠ 0) ln⁡(x) + C nếu x > 0, ln⁡(-x) + C nếu x < 0. ex ex + C axlna (a > 1, a ≠ 0) ax + C Cosx sinx + C – sinx cosx + C 1/(cosx)2 tanx + C (-1)/(sinx)2 cotx + C

a) Cho ∫(x – 1)10 dx. Đặt u = x – 1, hãy viết (x – 1)10dx theo u và du.

Xem Thêm:   Giải bài 14 trang 7 sbt toán 9 tập 1 ngắn gọn - Kiến Guru

b)∫Giải bài tập Toán 12 | Giải Toán lớp 12 Tra Loi Cau Hoi Toan 12 Giai Tich Bai 1 Trang 98 . Đặt x = et, hãy viết Giải bài tập Toán 12 | Giải Toán lớp 12 Tra Loi Cau Hoi Toan 12 Giai Tich Bai 1 Trang 98 theo t và dt.

a) Ta có (x – 1)10dx = u10 du (do du = d(x – 1) = dx.

b) Ta có dx = d(et) = et dt, do đó Giải bài tập Toán 12 | Giải Toán lớp 12 Tra Loi Cau Hoi Toan 12 Giai Tich Bai 1 Trang 98 1

Hãy tính ∫ (xcosx)’ dx và ∫ cosxdx. Từ đó tính ∫ xsinxdx.

Lời giải:

Ta có ∫ (xcosx)’dx = (xcosx) và ∫ cosxdx = sinx. Từ đó

∫ xsinxdx = – ∫ [(xcosx)’ – cosx]dx = -∫ (xcosx)’dx + ∫ cosxdx = – xcosx + sinx + C.

∫ P(x)ex dx ∫ P(x)cosxdx ∫ P(x)lnxdx P(x) exdx

Lời giải:

∫ P(x)ex dx ∫ P(x)cosxdx ∫ P(x)lnxdx P(x) P(x) P(x)lnx exdx cosxdx dx

Bài 1 (trang 100 SGK Giải tích 12): Trong các cặp hàm số dưới đây, hàm số nào là nguyên hàm của hàm số còn lại?

Giải bài 1 trang 100 sgk Giải tích 12 | Để học tốt Toán 12 Bai 1 Trang 100 Sgk Giai Tich 12 2

Lời giải:

a) Ta có: (-e-x)’ = -e-x.(-x)’ = e-x

⇒ -e-x là một nguyên hàm của hàm số e-x

Giải bài 1 trang 100 sgk Giải tích 12 | Để học tốt Toán 12 Bai 1 Trang 100 Sgk Giai Tich 12 3

b) (sin2x)’ = 2.sinx.(sinx)’ = 2.sinx.cosx = sin2x

⇒ sin2x là một nguyên hàm của hàm số .

Xem thêm: Bài 12 Trang 86 Sgk Toán 7 – Tập 1, Trong Hai Câu Sau, Câu Nào

Giải bài 1 trang 100 sgk Giải tích 12 | Để học tốt Toán 12 Bai 1 Trang 100 Sgk Giai Tich 12 4Giải bài 1 trang 100 sgk Giải tích 12 | Để học tốt Toán 12 Bai 1 Trang 100 Sgk Giai Tich 12 5

Giải bài 1 trang 100 sgk Giải tích 12 | Để học tốt Toán 12 Bai 1 Trang 100 Sgk Giai Tich 12 6 là một nguyên hàm của hàm số Giải bài 1 trang 100 sgk Giải tích 12 | Để học tốt Toán 12 Bai 1 Trang 100 Sgk Giai Tich 12 7

Giải bài 1 trang 100 sgk Giải tích 12 | Để học tốt Toán 12 Bai 1 Trang 100 Sgk Giai Tich 12 8

Bài 2 (trang 100 SGK Giải tích 12): Tìm hiểu nguyên hàm của các hàm số sau:

Giải bài 2 trang 100 sgk Giải tích 12 | Để học tốt Toán 12 Bai 2 Trang 100 Sgk Giai Tich 12 3

Lời giải:

Giải bài 2 trang 100 sgk Giải tích 12 | Để học tốt Toán 12 Bai 2 Trang 100 Sgk Giai Tich 12 4

Giải bài 2 trang 100 sgk Giải tích 12 | Để học tốt Toán 12 Bai 2 Trang 100 Sgk Giai Tich 12 5

Giải bài 2 trang 100 sgk Giải tích 12 | Để học tốt Toán 12 Bai 2 Trang 100 Sgk Giai Tich 12 6

Giải bài 2 trang 100 sgk Giải tích 12 | Để học tốt Toán 12 Bai 2 Trang 100 Sgk Giai Tich 12 7

Giải bài 2 trang 100 sgk Giải tích 12 | Để học tốt Toán 12 Bai 2 Trang 100 Sgk Giai Tich 12 8

Bài 3 (trang 101 SGK Giải tích 12): 3. Sử dụng phương pháp đổi biến, hãy tính:

Giải bài 3 trang 101 sgk Giải tích 12 | Để học tốt Toán 12 Bai 3 Trang 101 Sgk Giai Tich 12 10

Lời giải:

a) Đặt u = 1 – x ⇒ u’(x) = -1⇒ du = -dx

Giải bài 3 trang 101 sgk Giải tích 12 | Để học tốt Toán 12 Bai 3 Trang 101 Sgk Giai Tich 12 2

Thay u = 1 – x vào kết quả ta được :

Giải bài 3 trang 101 sgk Giải tích 12 | Để học tốt Toán 12 Bai 3 Trang 101 Sgk Giai Tich 12 3

b) Đặt u = 1 + x2 ⇒ u’ = 2x ⇒ du = 2x.dx

Giải bài 3 trang 101 sgk Giải tích 12 | Để học tốt Toán 12 Bai 3 Trang 101 Sgk Giai Tich 12 4

Thay lại u = 1+ x2 vào kết quả ta được:

Xem thêm: Câu hỏi trắc nghiệm Ngữ văn lớp 12 có đáp án, chọn lọc – Haylamdo

Xem Thêm:   Cho Thuê Văn Phòng Quận 12❤Tháng Một / 2023 ... - Vpexpress

Giải bài 3 trang 101 sgk Giải tích 12 | Để học tốt Toán 12 Bai 3 Trang 101 Sgk Giai Tich 12 5

c) Đặt u = cosx ⇒ u’ = -sinx ⇒ du = -sinx.dx

Giải bài 3 trang 101 sgk Giải tích 12 | Để học tốt Toán 12 Bai 3 Trang 101 Sgk Giai Tich 12 6

Thay lại u = cos x vào kết quả ta được:

Giải bài 3 trang 101 sgk Giải tích 12 | Để học tốt Toán 12 Bai 3 Trang 101 Sgk Giai Tich 12 11

d) Ta có:

Giải bài 3 trang 101 sgk Giải tích 12 | Để học tốt Toán 12 Bai 3 Trang 101 Sgk Giai Tich 12 7

Bài 4 (trang 101 SGK Giải tích 12): Sử dụng phương pháp tính nguyên hàm từng phần, hãy tính:

Giải bài 4 trang 101 sgk Giải tích 12 | Để học tốt Toán 12 Bai 4 Trang 101 Sgk Giai Tich 12 3

Lời giải:

Giải bài 4 trang 101 sgk Giải tích 12 | Để học tốt Toán 12 Bai 4 Trang 101 Sgk Giai Tich 12 4

Theo công thức nguyên hàm từng phần ta có:

Giải bài 4 trang 101 sgk Giải tích 12 | Để học tốt Toán 12 Bai 4 Trang 101 Sgk Giai Tich 12 5

b) Đặt

Giải bài 4 trang 101 sgk Giải tích 12 | Để học tốt Toán 12 Bai 4 Trang 101 Sgk Giai Tich 12 6

Theo công thức nguyên hàm từng phần ta có:

Giải bài 4 trang 101 sgk Giải tích 12 | Để học tốt Toán 12 Bai 4 Trang 101 Sgk Giai Tich 12 7

Theo công thức nguyên hàm từng phần ta có:

Giải bài 4 trang 101 sgk Giải tích 12 | Để học tốt Toán 12 Bai 4 Trang 101 Sgk Giai Tich 12 8

Giải bài 4 trang 101 sgk Giải tích 12 | Để học tốt Toán 12 Bai 4 Trang 101 Sgk Giai Tich 12 9

Giải bài 4 trang 101 sgk Giải tích 12 | Để học tốt Toán 12 Bai 4 Trang 101 Sgk Giai Tich 12 10

Phương Anh

Xin Chào mình là Huyền Anh, Mình chịu trách nhiện sản xuất nội dung trên website: Thcsthaivanlung.edu.vn, rất vui mang lại những thông tin hữu ích đến mọi người. Thay mặt Trường Thcs thái văn lung chúc các bạn tìm được những thông tin hữu ích nhất.

Related Articles

Back to top button