lớp 12

Hướng dẫn Giải bài 11 12 13 14 trang 42 43 sgk Toán 9 tập 2

Rate this post

Mời các bạn xem thêm danh sách tổng hợp Bài 11 12 13 14 toán đại 9 tập 2 tốt nhất và đầy đủ nhất

Video Bài 11 12 13 14 toán đại 9 tập 2

Hướng dẫn giải Bài §3. Phương trình bậc hai một ẩn, Chương IV – Hàm số (y = ax^2 (a ≠ 0)). Phương trình bậc hai một ẩn, sách giáo khoa toán 9 tập hai. Nội dung bài giải bài 11 12 13 14 trang 42 43 sgk toán 9 tập 2 bao gồm tổng hợp công thức, lý thuyết, phương pháp giải bài tập phần đại số có trong SGK toán để giúp các em học sinh học tốt môn toán lớp 9.

Lý thuyết

1. Định nghĩa

Phương trình bậc hai một ẩn (gọi tắt là phương trình bậc hai) là phương trình có dạng (ax^2+bx+c=0)

Xem Thêm:   Toàn văn Nghị quyết Trung ương 7 khóa XII về cải cách chính sách

Trong đó: x là ẩn; các hệ số a, b, c là các số cho trước và (aneq 0)

2. Một số ví dụ về giải phương trình bậc hai

Ví dụ 1:

Giải phương trình: (x^2+5x=0)

Bài giải:

Ta có: (x^2+5x=0Leftrightarrow x(x+5)=0)(Leftrightarrow x=0) hoặc (x=-5)

Vậy phương trình có hai nghiệm (x_{1}=0; x{_{2}}=-5)

Ví dụ 2:

Giải phương trình: (x^2-81=0)

Bài giải:

(x^2-81=0Leftrightarrow x^2=81Leftrightarrow x=pm 9)

Vậy phương trình có hai nghiệm: (x_{1}=9; x{_{2}}=-9)

Ví dụ 3:

Giải phương trình: (x^2-6x-7=0)

Bài giải:

(x^2-6x-7=0Leftrightarrow x^2-6x+9=16Leftrightarrow (x-3)^2=4^2)

(Leftrightarrow x-3=4) hoặc (Leftrightarrow x-3=-4)

Vậy (x=7) hoặc (x=-1)

Dưới đây là phần Hướng dẫn trả lời các câu hỏi có trong bài học cho các bạn tham khảo. Các bạn hãy đọc kỹ câu hỏi trước khi trả lời nhé!

Câu hỏi

1. Trả lời câu hỏi 1 trang 40 sgk Toán 9 tập 2

Trong các phương trình sau, phương trình nào là phương trình bậc hai ? Chỉ rõ các hệ số a, b, c của mỗi phương trình ấy:

a) (x^2 – 4 = 0)

b) (x^3+ 4x^2 – 2 = 0)

c) (2x^2 + 5x = 5)

d) (4x – 5 = 0)

e) (-3x^2= 0)

Xem thêm: Giải bài 4, 5, 6 trang 18 SGK Giải tích 12 – Giaibaitap.me

Trả lời:

a) (x^2 – 4 = 0) đây là phương trình bậc hai có (a = 1; b = 0; c = – 4)

b) (x^3+ 4x^2 – 2 = 0) đây không là phương trình bậc hai

c) (2x^2 + 5x = 5) đây là phương trình bậc hai có (a = 2; b = 5; c = – 5)

d) (4x – 5 = 0) đây không là phương trình bậc hai

Xem Thêm:   Sách Giải Bài Tập Toán Lớp 12 Bài 2 : Cộng, Trừ Và Nhân Số Phức

e) (-3x^2= 0) đây là phương trình bậc hai có (a = -3; b = 0; c = 0)

2. Trả lời câu hỏi 2 trang 41 sgk Toán 9 tập 2

Giải phương trình (2x^2 + 5x = 0) bằng cách đặt nhân tử chung để đưa nó về phương trình tích.

Xem thêm: Giải bài 4, 5, 6 trang 18 SGK Giải tích 12 – Giaibaitap.me

Trả lời:

Ta có

(eqalign{& 2{x^2} + 5x = 0 Leftrightarrow xleft( {2x + 5} right) = 0 cr & Leftrightarrow left[ matrix{x = 0 hfill cr 2x + 5 = 0 hfill cr} right. Leftrightarrow left[ matrix{x = 0 hfill cr x =dfrac{-5}{2} hfill cr} right. cr} )

Vậy phương trình có hai nghiệm

({x_1} = 0;,,{x_2} = displaystyle {{ – 5} over 2})

3. Trả lời câu hỏi 3 trang 41 sgk Toán 9 tập 2

Giải phương trình (3{x^2} – 2 = 0)

Xem thêm: Giải bài 4, 5, 6 trang 18 SGK Giải tích 12 – Giaibaitap.me

Trả lời:

Ta có (3{x^2} – 2 = 0 Leftrightarrow 3{x^2} = 2 Leftrightarrow {x^2} = dfrac{2}{3} \Leftrightarrow left[ begin{array}{l}x = sqrt {dfrac{2}{3}} \x = – sqrt {dfrac{2}{3}} end{array} right. \Leftrightarrow left[ begin{array}{l}x = dfrac{{sqrt 6 }}{3}\x = – dfrac{{sqrt 6 }}{3}end{array} right.)

Vậy phương trình có hai nghiệm (x = dfrac{{sqrt 6 }}{3};x = – dfrac{{sqrt 6 }}{3}.)

4. Trả lời câu hỏi 4 trang 41 sgk Toán 9 tập 2

Giải phương trình ({left( {x – 2} right)^2} = dfrac{7}{2}) bằng cách điền vào các chỗ trống (left( {…} right)) trong các đẳng thức: ({left( {x – 2} right)^2} = dfrac{7}{2} Leftrightarrow x – 2 = … Leftrightarrow x = …)

Vậy phương trình có hai nghiệm là: ({x_1} = …;{x_2} = …)

Xem thêm: Giải bài 4, 5, 6 trang 18 SGK Giải tích 12 – Giaibaitap.me

Trả lời:

Ta có ({left( {x – 2} right)^2} = dfrac{7}{2} Leftrightarrow x – 2 = pm sqrt {dfrac{7}{2}} \Leftrightarrow x = 2 pm dfrac{{sqrt {14} }}{2})

Xem Thêm:   Tổng hợp lý thuyết Chương 3: Phương pháp tọa độ trong không gian

Vậy phương trình có hai nghiệm là: ({x_1} = 2 + dfrac{{sqrt {14} }}{2};{x_2} = 2 – dfrac{{sqrt {14} }}{2})

5. Trả lời câu hỏi 5 trang 41 sgk Toán 9 tập 2

Giải phương trình ({x^2} – 4x + 4 = dfrac{7}{2})

Xem thêm: Giải bài 4, 5, 6 trang 18 SGK Giải tích 12 – Giaibaitap.me

Trả lời:

Ta có:

({x^2} – 4x + 4 = dfrac{7}{2})

( Leftrightarrow {left( {x – 2} right)^2} = dfrac{7}{2} \Leftrightarrow left[ begin{array}{l}x – 2 = sqrt {dfrac{7}{2}} \x – 2 = – sqrt {dfrac{7}{2}} end{array} right. \Leftrightarrow left[ begin{array}{l}x = 2 + dfrac{{sqrt {14} }}{2}\x = 2 – dfrac{{sqrt {14} }}{2}end{array} right.)

Vậy phương trình có hai nghiệm (x = 2 + dfrac{{sqrt {14} }}{2};x = 2 – dfrac{{sqrt {14} }}{2})

6. Trả lời câu hỏi 6 trang 41 sgk Toán 9 tập 2

Giải phương trình ({x^2} – 4x = – dfrac{1}{2}).

Xem thêm: Giải bài 4, 5, 6 trang 18 SGK Giải tích 12 – Giaibaitap.me

Trả lời:

Cộng hai vế của phương trình đã cho với (4) ta được ({x^2} – 4x + 4 = – dfrac{1}{2} + 4)

( Leftrightarrow {left( {x – 2} right)^2} = dfrac{7}{2} Leftrightarrow left[ begin{array}{l}x – 2 = sqrt {dfrac{7}{2}} \x – 2 = – sqrt {dfrac{7}{2}} end{array} right. \Leftrightarrow left[ begin{array}{l}x = 2 + dfrac{{sqrt {14} }}{2}\x = 2 – dfrac{{sqrt {14} }}{2}end{array} right.)

Vậy phương trình có hai nghiệm (x = 2 + dfrac{{sqrt {14} }}{2};x = 2 – dfrac{{sqrt {14} }}{2})

7. Trả lời câu hỏi 7 trang 41 sgk Toán 9 tập 2

Giải phương trình (2{x^2} – 8x = – 1).

Xem thêm: Giải bài 4, 5, 6 trang 18 SGK Giải tích 12 – Giaibaitap.me

Trả lời:

Chia cả hai vế của phương trình (2{x^2} – 8x = – 1) cho (2) ta được phương trình

({x^2} – 4x = – dfrac{1}{2}) ( Leftrightarrow {x^2} – 4x + 4 = – dfrac{1}{2} + 4)

Xem Thêm:   34 đề đọc Hiểu Môn Ngữ Văn Theo Cấu Trúc đề Thi THPT Quốc Gia

( Leftrightarrow {left( {x – 2} right)^2} = dfrac{7}{2}\ Leftrightarrow left[ begin{array}{l}x – 2 = sqrt {dfrac{7}{2}} \x – 2 = – sqrt {dfrac{7}{2}} end{array} right. \Leftrightarrow left[ begin{array}{l}x = 2 + dfrac{{sqrt {14} }}{2}\x = 2 – dfrac{{sqrt {14} }}{2}end{array} right.)

Vậy phương trình có hai nghiệm (x = 2 + dfrac{{sqrt {14} }}{2};x = 2 – dfrac{{sqrt {14} }}{2})

Dưới đây là Hướng dẫn giải bài 11 12 13 14 trang 42 43 sgk toán 9 tập 2. Các bạn hãy đọc kỹ đầu bài trước khi giải nhé!

Bài tập

Giaibaisgk.com giới thiệu với các bạn đầy đủ phương pháp giải bài tập phần đại số 9 kèm bài giải chi tiết bài 11 12 13 14 trang 42 43 sgk toán 9 tập 2 của Bài §3. Phương trình bậc hai một ẩn trong Chương IV – Hàm số (y = ax^2 (a ≠ 0)). Phương trình bậc hai một ẩn cho các bạn tham khảo. Nội dung chi tiết bài giải từng bài tập các bạn xem dưới đây:

Giải bài 11 12 13 14 trang 42 43 sgk toán 9 tập 2
Giải bài 11 12 13 14 trang 42 43 sgk toán 9 tập 2

1. Giải bài 11 trang 42 sgk Toán 9 tập 2

Đưa các phương trình sau về dạng (a{x^2} + bx + c = 0) và chỉ rõ các hệ số (a, b, c):

a) (5{x^2} + 2x = 4 – x)

b) ({3 over 5}{x^2} + 2x – 7 = 3x + {1 over 2})

c) (2{x^2} + x – sqrt 3 = sqrt 3 x + 1);

d) (2{x^2} + {m^2} = 2(m – 1)x), (m) là một hằng số.

Bài giải:

a) Ta có:

(5{x^2} + 2x = 4 – x)

(Leftrightarrow 5{x^2} + 2x – 4 + x=0)

(Leftrightarrow 5{x^2} + 3x – 4 =0)

(Leftrightarrow 5{x^2} + 3x +(- 4) =0)

Suy ra (a = 5, b = 3, c = – 4.)

Xem thêm: Soạn giải bài tập ngữ văn lớp 12 Tập 1 – BAIVIET.COM

Xem Thêm:   Soạn bài Nghị luận về một bài thơ, đoạn thơ | Ngắn nhất Soạn văn 12

b) Ta có:

(dfrac{3 }{5}{x^2} + 2x – 7 = 3x + dfrac{1}{2})

( Leftrightarrow dfrac{3}{5}{x^2} +2 x -7-3x-dfrac{1}{2}= 0)

( Leftrightarrow dfrac{3}{5}{x^2} -x -dfrac{15}{2}= 0)

( Leftrightarrow dfrac{3}{5}{x^2} +(-1).x +{left(-dfrac{15}{2} right)}= 0)

Suy ra (a = dfrac{3 }{5}, b = – 1, c = – dfrac{15}{2}).

c) Ta có:

(2{x^2} + x – sqrt 3 = sqrt 3 x + 1)

( Leftrightarrow 2{x^2} + x – sqrt 3 – sqrt 3 x -1 = 0)

( Leftrightarrow 2{x^2} + (1-sqrt 3)x + (-sqrt 3 -1) = 0)

Suy ra (a = 2, b = 1 – sqrt 3 , c = – sqrt 3 -1.)

d) Ta có:

(2{x^2} + {m^2} = 2(m – 1)x)

(Leftrightarrow 2{x^2} +m^2-2(m-1)x=0 )

(Leftrightarrow 2{x^2} -2(m-1)x+m^2=0 )

(Leftrightarrow 2{x^2} + [-2(m-1)]x+m^2=0 )

Suy ra (a = 2, b = – 2(m – 1), c = {m^2}.)

2. Giải bài 12 trang 42 sgk Toán 9 tập 2

Giải các phương trình sau:

a) ({x^2} – 8 = 0) b) (5{x^2} – 20 = 0) ;

c) (0,4{x^2} + 1 = 0); d) (2{x^2} + sqrt 2 x = 0);

e) ( – 0.4{x^2} + 1,2x = 0).

Bài giải:

a) Ta có:

({x^2} – 8 = 0 Leftrightarrow {x^2} = 8 Leftrightarrow x = pm sqrt 8 Leftrightarrow x= pm 2sqrt 2 ).

Vậy phương trình đã cho có hai nghiệm (x= pm 2 sqrt 2).

Xem thêm: Soạn giải bài tập ngữ văn lớp 12 Tập 1 – BAIVIET.COM

b) Ta có:

(5{x^2} – 20 = 0 Leftrightarrow 5{x^2} = 20 Leftrightarrow {x^2} = dfrac{20}{5} )

(Leftrightarrow x^2 = 4 Leftrightarrow x=pm sqrt 4 Leftrightarrow x =pm 2).

Vậy phương trình đã cho có hai nghiệm (x= pm 2).

c) Ta có:

(0,4{x^2} + 1 = 0 Leftrightarrow 0,4{x^2} = – 1 \Leftrightarrow {x^2} = – dfrac{1}{0,4}Leftrightarrow {x^2} = – 2,5) (vô lý vì (x^2 ge 0) với mọi (x))

Vậy phương trình đã cho vô nghiệm.

d) Ta có:

(2{x^2} + sqrt 2 x = 0 Leftrightarrow x(2x + sqrt 2 ) = 0)

(Leftrightarrow left[ matrix{ x = 0 hfill cr 2x + sqrt 2=0 hfill cr} right.)

Xem Thêm:   Giải bài 4, 5, 6, 7 trang 8 SGK Giải tích 12 Nâng cao - Giaibaitap.me

(Leftrightarrow left[ matrix{ x = 0 hfill cr 2x =- sqrt 2 hfill cr} right.)

(Leftrightarrow left[ matrix{ x = 0 hfill cr x =- dfrac{sqrt 2}{2} hfill cr} right.)

Phương trình có hai nghiệm là: (x = 0; x = dfrac{-sqrt 2}{2}.)

e) Ta có:

Xem thêm: Văn mẫu: Tổng hợp bài viết số 1 ngữ văn 12 (3 đề) – Tech12h

( – 0,4{x^2} + 1,2x = 0 Leftrightarrow – 4{x^2} + 12x = 0)

(Leftrightarrow – 4x(x – 3) = 0)

( Leftrightarrow left[ matrix{ -4x = 0 hfill cr x – 3=0 hfill cr} right.)

( Leftrightarrow left[ matrix{ x = 0 hfill cr x =3 hfill cr} right.)

Vậy phương trình có hai nghiệm là: ({x} = 0, {x} = 3)

3. Giải bài 13 trang 43 sgk Toán 9 tập 2

Cho các phương trình:

a) ({x^2} + 8x = – 2); b)({x^2} + 2x = dfrac{1}{3}.)

Hãy cộng vào hai vế của mỗi phương trình cùng một số thích hợp để được một phương trình mà vế trái thành một bình phương.

Bài giải:

a) Ta có:

({x^2} + 8x = – 2 Leftrightarrow {x^2} + 2.x.4 = – 2 ) (1)

Cộng cả hai vế của phương trình (1) với (4^2) để vế trái trở thành hằng đẳng thức số (1), ta được:

( x^2 + 2.x.4 +4^2 = – 2 +4^2)

(Leftrightarrow (x + 4)^2 = 14)

Xem thêm: Soạn giải bài tập ngữ văn lớp 12 Tập 1 – BAIVIET.COM

b) Ta có:

({x^2} + 2x = dfrac{1}{3} Leftrightarrow {x^2} + 2.x.1 = dfrac{1}{3} ) (2)

Cộng cả hai vế của phương trình (2) với (1^2) để vế trái trở thành hằng đẳng thức số (1), ta được:

(x^2+2.x.1+1^2=dfrac{1}{3}+1^2)

(Leftrightarrow x^2+2.x.1+1^2=dfrac{4}{3})

(Leftrightarrow {(x + 1)^2} = dfrac{4 }{3}).

4. Giải bài 14 trang 43 sgk Toán 9 tập 2

Hãy giải phương trình:

Xem Thêm:   SBT Toán lớp 5 trang 11,12: Ôn tập và bổ sung về giải toán

(2{x^2} + 5x + 2 = 0)

Theo các bước như ví dụ (3) trong bài học.

Bài giải:

Ta có:

(2{x^2} + 5x + 2 = 0 )

(Leftrightarrow 2{x^2} + 5x = – 2 ) (chuyển (2) sang vế phải)

(Leftrightarrow {x^2} + dfrac{5}{ 2}x = – 1) (chia cả hai vế cho (2))

(Leftrightarrow {x^2} + 2. x. dfrac{5}{ 4} = – 1) (tách (dfrac{5}{ 2}x =2. x. dfrac{5}{ 4} ))

(Leftrightarrow {x^2} + 2.x. dfrac{5 }{4} + {left(dfrac{5}{4} right)^2}= – 1 + {left(dfrac{5}{4} right)^2}) (cộng cả hai vế với ({left(dfrac{5}{4} right)^2}))

(Leftrightarrow {left( x + dfrac{5}{ 4} right)^2} = -1+dfrac{25}{16})

(Leftrightarrow {left( x + dfrac{5}{ 4} right)^2} =dfrac{9}{16})

( Leftrightarrow left[ matrix{ x + dfrac{5}{ 4} = dfrac{3 }{4} hfill cr x + dfrac{5 }{4} = – dfrac{3}{4} hfill cr} right. Leftrightarrow left[ matrix{ x = – dfrac{1 }{2} hfill cr x = – 2 hfill cr} right.)

Vậy phương trình đã cho có hai nghiệm là (x= -dfrac{1}{2}) và (x=-2).

Bài trước:

  • Luyện tập: Giải bài 6 7 8 9 10 trang 38 39 sgk Toán 9 tập 2

Bài tiếp theo:

  • Giải bài 15 16 trang 45 sgk Toán 9 tập 2

Xem thêm:

  • Các bài toán 9 khác
  • Để học tốt môn Vật lí lớp 9
  • Để học tốt môn Sinh học lớp 9
  • Để học tốt môn Ngữ văn lớp 9
  • Để học tốt môn Lịch sử lớp 9
  • Để học tốt môn Địa lí lớp 9
  • Để học tốt môn Tiếng Anh lớp 9
  • Để học tốt môn Tiếng Anh lớp 9 thí điểm
  • Để học tốt môn Tin học lớp 9
  • Để học tốt môn GDCD lớp 9

Chúc các bạn làm bài tốt cùng giải bài tập sgk toán lớp 9 với giải bài 11 12 13 14 trang 42 43 sgk toán 9 tập 2!

“Bài tập nào khó đã có giaibaisgk.com“

Xem Thêm:   Trắc nghiệm Toán 12 học kì I (P1) - Tech12h

Phương Anh

Xin Chào mình là Huyền Anh, Mình chịu trách nhiện sản xuất nội dung trên website: Thcsthaivanlung.edu.vn, rất vui mang lại những thông tin hữu ích đến mọi người. Thay mặt Trường Thcs thái văn lung chúc các bạn tìm được những thông tin hữu ích nhất.

Related Articles

Back to top button